Question		on	Answer	Marks	Guidance
1	а		all travel at speed of light through a vacuum are oscillating E and B fields or are caused by accelerating charges/AW	B1 B1	max 2 marks from 3 marking points if 3 properties are given withhold one mark for each incorrect property so 2 correct and 1 incorrect would score 1 mark ;1 correct and 2 incorrect would score zero, etc
	b	i	oscillations (of particles/e-m fields along the wave) are in one direction only perpendicular to the direction of wave propagation/of travel of the wave/of energy transfer	B1 B1	
		ii	light passing through polariser 1 is <u>vertically</u> polarised/ only vertical oscillations of the light exist beyond the polariser 1/AW only (the component of) light in the <u>horizontal</u> plane can pass through polariser 2 so no light reaches the eye	B1 B1	allow any words indicating <u>vertical</u> , e.g. up and down; for <u>horizontal</u> , e.g. at 90° to vertical or crossed polarisers accept using Malus' law $I_{trans} = I_{incident} cos^2 \theta$ with $\theta = 90^\circ$ gives $I_{trans} = 0$
		iii	after polariser 1 the component of the vertically polarised light at 45° passes through polariser 3 the polarised light beyond polariser 3 has a component at 45° which passes through polariser 2 so light reaches the eye or mark a typical answer of the form (max 2) as follows some of the vertically polarised light passes through polariser 3 and some of this passes through polariser 2 because in each case the polarised light is not at right angles to the transmission axis of the polariser	B1 B1 B1	QWC statement to the effect that component of light along polarising axis of filter is transmitted accept using Malus' law $I_{trans} = I_{incident}cos^2\theta$ with $\theta = 45^\circ$ gives $I_{trans} = I_{incident}/2$ same process gives $I_{trans} = I_{incident}/2$ again so ¼ of light after polariser 1 reaches eye (assuming no absorption) accept answers in terms of amplitudes rather than intensities, i.e. $A = A_0 \cos \theta$, etc.
			Total	9	

Q	uestio	n Answer	Marks	Guidance
2	а	(micro)waves are <u>reflected</u> (at the metal walls) reflected waves interfere/superpose with the incident waves to produce nodes and antinodes (– a stationary wave pattern)	B1 B1 B1	allow points of constructive and destructive interference
	b	X are the points of <u>maximum</u> energy/intensity/amplitude so are antinodes	M1 A1	allow displacement in this case
	C	measurement = 3 cm or $\lambda/2$ = 6 cm so λ = 0.12 m c = f λ = 2.5 x 10 ⁹ x 0.12 = 3.0 x 10 ⁸ (m s ⁻¹)	B1 C1 M1 A1	measurement to within $\pm 1 \text{ mm}$ ecf measurement, i.e. $\lambda = 4 \text{ x}$ measurement there must be a valid calculation shown scores 1 out of final 3 for answer of 1.5 x 10 ⁸ allow 1 SF, i.e. 3 x 10 ⁸
		Total	9	

Question		ion	Answer	Marks	Guidance
3	(a)	(i)	<i>displacement :</i> (any) distance moved from equilibrium of a <u>point/particle</u> on a wave <i>amplitude</i> maximum displacement (caused by wave motion)	B1 B1	allow rest, zero, mean position
	(a)	(ii)	<i>frequency</i> number of wavelengths passing a point /vibrations at a point <u>per</u> unit time/second or produced by the wave source /AW <i>phase difference</i> between two points on the same wave/waves of the same frequency, how far through the cycle one point is compared to the other	B1 B1	 allow number of oscillations / cycles per second accept in one second allow suitable descriptions of in phase <u>and</u> out of phase; or an angular measurement of how much a wave leads or lags/AW
AAAA	(b)		pulse starts at 0.5 s ends at 2.0 s pulse shape is reversed from Fig 6.1 pulse has correct amplitudes	B1 B1 B1	ie amplitude decreasing from L to R over 1.5s accept inversion in time axis NB if extra loops, probably only first marking point available if diagram looks like a coiled spring rather than a smooth curve, 1 st , 2 nd and 4 th marking points are possible
			Total	8	

Question		on	Answer	Marks	Guidance	
4	(a)		travel in a vacuum same speed (in vacuum)/at c caused by accelerating charges are (oscillating) electric and magnetic fields	B1 B1	max 2 marks from 4 marking points for any one incorrect property, max of 1/2 if 2 incorrect properties, score 0	
	(b)		10 ⁻⁴ microwaves; 10 ⁻⁶ ir; 10 ⁻⁸ uv; 10 ⁻¹² gamma	B1 B1	4 correct 2 marks 2 correct 1 mark	
	(C)	(i)	the incident wave is reflected at the sheet to produce return wave of same frequency/AW reflected wave is weaker	B1	accept incident_and reflected waves are from same source/of same wavelength/AW	
			OR the reflected wave has travelled a greater distance	B1	allow wave amplitude decreases with distance	
A A A	(c)	(ii)	reflected wave interferes/superposes with the incident wave constructive interference occurs (or waves add) to give maxima/AW and destructive interference occurs (or waves add) to give minima/AW detail given, e.g. waves add in phase for max/out of phase for min or path difference n λ for max (2n +1)/2 λ for min	B1 M1 A1	if <u>incident</u> and <u>reflected</u> waves identified in (c)(i) accept "the waves interfere / superpose" QWC mark for second marking point accept antinodes for maxima and nodes for minima	
	(c)	(iii)	$\lambda/4 = 7.5 \text{ mm}; \ \lambda = 30 \text{ mm}$	B1		
	(c)	(iv)	appreciation that I is proportional to a^2 ratio = $(0.8 + 0.6)^2/(0.8 - 0.6)^2$ = $(1.4/0.2)^2 = 7^2 = 49$	C1 C1 A1		
			NOW SCROLL DOWN TO CHECK PAGE 18 IS BLANK			
			Total	13		

Question		on	Expected Answers	Μ	Additional Guidance
5					
	а	i	0.60 m	B1	allow 0.6 another example of SF comment Q2
		ii1	the wave has moved along 0.5 wavelengths in 0.75 ms so will		can be answered in terms of phase
			move one wavelength in 1.5 ms which is the period/AW	B1	
		ii2	$f = 670 \text{ Hz so } v = f\lambda = 670 \times 0.60$	C1	ecf(a)(i)
			$= 400 \text{ (m s}^{-1})$	A1	accept $v = \lambda/T = 0.60/1.5 \times 10^{-3}$
	b		0	B1	
	С	i	displacement any distance moved from equilibrium of a		allow alternatives for equilibrium, e.g.
			point/particle (on a wave)	B1	mean/rest/undisturbed position
			amplitude maximum possible displacement (caused by wave	B1	
			motion)		
		ii	progressive a wave which transfers energy	B1	accept phase relationship descriptions between
			stationary a wave which traps/stores energy (in pockets)	B1	different points on wave;
					must be a comparison for same property to score both
			OR		marks
			progressive : transfers shape/information from one place to		
			another	B1	
			stationary where the shape does not move along/which has	5.	
	<u>-</u>	-	nodes and antinodes/AW	B1	
	d	i	the incident wave is <u>reflected</u> at the fixed ends of the wire	B1	must have reference to an end of the wire
			reflected wave interferes/superposes with the incident wave	B1	QWC mark
			to produce a resultant wave with nodes and antinodes/no	B1	
			energy transfer	-	
		111	0.70 (mm)	B1	allow 0.60 to 0.80 mm
		112	0.15 (m)/0.45 (m)	B1	anywhere on vertical line x = 0.15 or 0.45
		113	x = 0.2, y = -1.7	B1	
			Total question 5	15	